GEOMETRY
COORDINATE GEOMETRY
Proofs

'I think you should be more explicit here in step two.'

Name ________________________________

Period ______________________________
Coordinate Geometry Proofs

Slope: We use slope to show parallel lines and perpendicular lines.

Parallel Lines have the same slope

If \(\overrightarrow{AB} \) is parallel to \(\overrightarrow{CD} \), the slope of \(\overrightarrow{AB} = m_1 \), and the slope of \(\overrightarrow{CD} = m_2 \), then:

\[
m_1 = m_2
\]

Perpendicular Lines have slopes that are negative reciprocals of each other.

If \(\overrightarrow{AB} \) is perpendicular to \(\overrightarrow{CD} \), the slope of \(\overrightarrow{AB} = m_1 \), and the slope of \(\overrightarrow{CD} = m_2 \), then:

\[
m_1 = -\frac{1}{m_2} \quad \text{or} \quad m_2 = -\frac{1}{m_1} \quad \text{or} \quad m_1 \cdot m_2 = -1
\]

\[
\text{slope} = m = \frac{\Delta y}{\Delta x}
\]

\[
m = \frac{y_2 - y_1}{x_2 - x_1} \quad \text{or} \quad m = \frac{y_1 - y_2}{x_1 - x_2}
\]

Midpoint: We use midpoint to show that lines bisect each other.

Lines With the same midpoint bisect each other

Midpoint Formula:

\[
\text{mid} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)
\]

Distance: We use distance to show line segments are equal.

You can use the Pythagorean Theorem or the formula:

\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]
Proving a triangle is a right triangle

Method: Show two sides of the triangle are perpendicular by demonstrating their slopes are opposite reciprocals.

Example 1: Using Geometer’s Sketchpad

Given: The triangle with vertices $A(4, -1), B(5, 6),$ and $C(1, 3)$.

Show: ΔABC is an isosceles right triangle.

Question:

Formula:

Work:

Statement:
Practice 1: The vertices of triangle JEN are J(2,10), E(6,4), and N(12,8). Use coordinate geometry to prove that Jen is an isosceles right triangle.

Practice 2:
Prove that the polygon with coordinates A(1, 1), B(4, 5), and C(4, 1) is a right triangle.
Practice 3: “Using Geometer’s Sketchpad”
Show that the triangles with the following vertices are isosceles.
(1, 0), (5, 0), (3, 4)

SUMMARY
Homework

1. Prove the polygon with the given coordinates is a right triangle.
 \((-1, 0), (6, 1), (2, 4)\)

2. Show that the triangles with the following vertices are isosceles.
 \((2, 3), (5, 7), (1, 4)\)
3. Show that the line segments joining the points \((-1, 3), (9, 3),\) and \((4, 8)\) form an isosceles right triangle.
Proving a Quadrilateral is a Parallelogram

Method 1: Show that the diagonals bisect each other by showing the midpoints of the diagonals are the same

Method 2: Show both pairs of opposite sides are parallel by showing they have equal slopes.

Method 3: Show both pairs of opposite sides are equal by using distance.

Method 4: Show one pair of sides is both parallel and equal.

Example Model Problem
Prove that the quadrilateral with the coordinates P(0, 2), Q(4, 8), R(7, 6) and S(3, 0) is a parallelogram.

Question:

Formula:

Work:

Statement:
Practice

1. Prove that the quadrilateral with the coordinates $L(-2,3)$, $M(4,3)$, $N(2,-2)$ and $O(-4,-2)$ is a parallelogram.

![Coordinate Plane](image1.png)

2. Prove that the quadrilateral with the coordinates $P(1,1)$, $Q(2,4)$, $R(5,6)$ and $S(4,3)$ is a parallelogram.

![Coordinate Plane](image2.png)
3. Prove that the quadrilateral with the coordinates R(3,2), S(6,2), T(0,-2) and U(-3,-2) is a parallelogram.

Summary
Homework

Prove that quadrilateral SAND with the vertices S(-2,-2), A(-1,2), N(5,3) and D(4,-1) is a parallelogram.

Prove that quadrilateral LEAP with the vertices L(-3,1), E(2,6), A(9,5) and P(4,0) is a parallelogram.
Proving a Quadrilateral is a Rectangle

Prove that it is a parallelogram first, then:

Method: Show that the diagonals are congruent.

Example Model Problem
1. Prove a quadrilateral with vertices G(0,5), H(6,9), I(8,6) and J(2,2) is a rectangle.

Question:

Formula:

Work:

Statement:
Practice
1. The vertices of quadrilateral COAT are C(0,0), O(5,0), A(5,2) and T(0,2). Prove that COAT is a rectangle.
Practice

2 Prove that quadrilateral GHIJ with the vertices \(G(1,1), H(5,3), I(4,5),\) and \(J(0,3)\) is a rectangle.
Homework

Prove that quadrilateral ABCD with the vertices A(2,1), B(1,3), C(-5,0), and D(-4,-2) is a rectangle.

Prove that quadrilateral PLUS with the vertices P(2,1), L(6,3), U(5,5), and S(1,3) is a rectangle.
Proving a Quadrilateral is a Rhombus

Method: Prove that all four sides are equal.

Example Model Problem
Prove that a quadrilateral with the vertices A(-2,3), B(2,6), C(7,6) and D(3,3) is a rhombus.

Question:

Formula:

Work:

![Graph](image-url)
1. Prove that the quadrilateral with the vertices D(2,1), A(6,-2), V(10,1) and E(6,4) is a rhombus.

2. Prove that quadrilateral ABCD with the vertices A(8,0), B(0,6), C(-8,0), and D(0,-6) is a rhombus.
Homework

1. Prove that quadrilateral GHIJ with the vertices G(-2,2), H(3,4), I(8,2), and J(3,0) is a rhombus.
Prove that quadrilateral TIME with the vertices T(1,1), I(5,3), M(7,7), and E(3,5) is a rhombus.
Proving that a Quadrilateral is a Square

There are many ways to do this. Prove that the quadrilateral is a rectangle and a rhombus.

Example Model Problem
1. Prove that the quadrilateral with vertices A(0,0), B(4,3), C(7,-1) and D(3,-4) is a square.

Statement:
Practice

1. Prove that the quadrilateral with vertices A(2,2), B(5,-2), C(9,1) and D(6,5) is a square.
2. Prove that quadrilateral PQRS with the vertices P(0,0), Q(4,3), R(7,-1), and S(3,-4) is a square.
Homework
Prove that quadrilateral JKLM with the vertices J(2,-1), K(-1,-4), L(-4,-1), and M(-1,2) is a square.

Prove that quadrilateral ABCD with the vertices A(1,3), B(2,0), C(5,1), and D(4,4) is a square.
Proving a Quadrilateral is a Trapezoid

Show one pair of sides are parallel (same slope) and one pair of sides are not parallel (different slopes).

Example Model Problem
Prove that DEFG a trapezoid with coordinates D(-4,0), E(0,1), F(4,-1) and G(-4,-3).

Question:

Formula:

Work:

Statement:
Proving a Quadrilateral is an Isosceles Trapezoid

Prove that it is a trapezoid first, then:

Method 1: Prove the diagonals are congruent using distance.

Method 2: Prove that the pair of non parallel sides are equal.

Example Model Problem
1. Prove that quadrilateral BCDE with the vertices B(0,4), C(3,1), D(3, -5), and E(0,-8) is an isosceles trapezoid.

Question:

Formula:

Work:

Statement:
Prove that quadrilateral ABCD with the vertices A(1,6), B(7,9), C(13,6), and D(3,1) is a trapezoid.

Quadrilateral ABCD has vertices A(-8,2), B(0,6), C(8,0), and D(-8,-8). Prove that quadrilateral ABCD is an isosceles trapezoid.
The vertices of a trapezoid ABCD are A(2, -4), B(11, -4), C(10, 2), and D(3, 2).
Prove that ABCD is an isosceles trapezoid.
Homework

Quadrilateral *KATE* has vertices *K*(1,5), *A*(4,7), *T*(7,3), and *E*(1,–1). Prove that *KATE* is a trapezoid.

Quadrilateral *PQRS* has vertices *P*(–3,–4), *Q*(9,5), *R*(–1,10), and *S*(–5,7). Prove that quadrilateral *PQRS* is an isosceles trapezoid.
Practice with Coordinate Proofs

1. The vertices of \(\triangle ABC \) are \(A(3,-3), B(5,3) \) and \(C(1,1) \). Prove by coordinate geometry that \(\triangle ABC \) is an isosceles right triangle.

2. Prove that quadrilateral PLUS with the vertices P(2,1), L(6,3), U(5,5), and S(1,3) is a parallelogram.
3. *Given:* The quadrilateral with vertices $A(2, 2)$, $B(5, -2)$, $C(9, 1)$, and $D(6, 5)$.

Show: $ABCD$ is a rhombus.

4. The vertices of quadrilateral $ABCD$ are $A(-3, -1)$, $B(6, 2)$, $C(5, 5)$ and $D(-4, 2)$. Prove that quadrilateral $ABCD$ is a rectangle.
5. The vertices of quadrilateral ABCD are A(-3,1), B(1,4), C(4,0) and D(0,-3). Prove that quadrilateral ABCD is a square.

6. Quadrilateral METS has vertices M(-5, -2), E(-5,3), T(4,6) and S(7,2). Prove by coordinate geometry that quadrilateral METS is an isosceles trapezoid.